Steam Audio Unreal Engine 4 Plugin

Steam® Audio, Copyright 2016 - 2017, Valve Corp. All rights reserved.

Introduction

Thanks for trying out Steam Audio. It is a complete solution to add 3D audio and environmental effect to your game or VR experience. It has the following capabilities:

• **3D audio for direct sound.** Steam Audio binaurally renders direct sound using HRTFs to accurately model the direction of a sound source relative to the listener. Users can get an impression of the height of the source, as well as whether the source is in front of or behind them.

• **Occlusion and partial occlusion.** Steam Audio can quickly model raycast occlusion of direct sound by solid objects. Steam Audio also models partial occlusion for non-point sources.

• **Model a wide range of environmental effects.** Steam Audio can model many kinds of environmental audio effects, including slap echoes, flutter echoes, occlusion of sound by buildings, propagation of occluded sound along alternate paths, through doorways, and more.

• **Create environmental effects and reverbs tailored to your scene.** Steam Audio analyzes the size, shape, layout, and material properties of rooms and objects in your scene. It uses this information to automatically calculate environmental effects by simulating the physics of sound.

• **Automate the process of creating environmental effects.** With Steam Audio, you don’t have to manually place effect filters throughout your scene, and you don’t have to manually tweak the filters everywhere. Steam Audio uses an automated real-time or pre-computation based process where environmental audio properties are calculated (using physics principles) throughout your scene.

• **Generate high-quality convolution reverb.** Steam Audio can calculate convolution reverb. This involves calculating Impulse Responses (IRs) at several points throughout the scene. Convolution reverb results in compelling environments that sound more realistic than with parametric reverb. This is particularly true for outdoor spaces, where parametric reverbs have several limitations.

• **Head tracking support.** For VR applications, Steam Audio can use head tracking information to make the sound field change smoothly and accurately as the listener turns or moves their head.
How Steam Audio Works

This section describes the various parts of Steam Audio, focusing on the way in which the computational load is divided between multiple threads. Steam Audio interacts with three main threads:

1. **Game Thread.** This thread controls the game state, and sends this information to the Simulation Thread. This thread is managed by the game engine, and runs as fast as the game engine chooses to execute it, which might be 60 Hz assuming vsync is enabled.

2. **Simulation Thread.** This thread actually carries out the sound propagation simulation, and performs the bulk of the computational work. It uses source and listener information provided by the Game Thread, and calculates an impulse response for use by the Rendering Thread. This process involves ray tracing. This thread is managed internally by Steam Audio, and runs as fast as it can, but no faster than the Rendering Thread.

3. **Rendering Thread.** This thread applies direct occlusion, 3D audio, and environmental effects to each sound source. Steam Audio inserts DSP code into the main audio thread, to perform convolutions with multi-channel impulse responses. This thread runs at the audio DSP rate, which is typically 1024 samples per frame, and 44100 samples per second.

Integration and Platforms

Steam Audio supports **Unreal Engine 4.16 or higher**. If you are using Unity, refer to the Steam Audio Unity Plugin Manual. If you are using a different game engine or audio middleware, you will need to use the Steam Audio C API. Refer to the Steam Audio API Reference for further information.

The Steam Audio Unreal Engine 4 plugin currently supports Windows 7 or later (64-bit only).

Unreal Engine 4 Integration

This chapter explains how to use Steam Audio with Unreal Engine. It assumes that you are using Unreal’s built-in audio engine. Support for other audio engines like FMOD Studio and Audiokinetic Wwise will be available soon.

Enabling Audio Mixer Functionality

Steam Audio requires the latest Audio Mixer functionality available in Unreal Engine 4.16 onwards. In Unreal 4.16, this functionality is disabled by default. To enable it, you must first create a shortcut to the Unreal Engine editor:

1. In the Epic Games Launcher, click **Library**.
2. Click the down arrow next to the Unreal Engine version you want to use (4.16 or later), and click **Create Shortcut**.
You can use any other method to create a shortcut to the editor.

Next, you must modify the command-line arguments used when launching the editor using the shortcut:

1. Right-click the shortcut to the Unreal editor and click Properties.
2. In the Shortcut tab, under Target, add -audiomixer at the end of the command line.
3. Click OK.

Enabling Steam Audio

Before using Steam Audio with Unreal, you must enable it for your project. To do so:

1. In the Unreal Editor main menu, click Edit > Plugins.
2. In the left pane of the Plugins window, under Built-In, click Audio.
3. Scroll the list of plugins until you see Steam Audio, then check Enabled.

Enabling the Steam Audio plugin.

3D Audio for Direct Sound

Steam Audio offers the easiest way to add HRTF-based 3D audio for video games and VR experiences. To add 3D audio, without adding any occlusion or environmental effects, follow the steps in this section.

You can apply Steam Audio spatialization to any Actor in your scene that contains an Audio Component. To do this:

1. In the World Outliner tab, select the Actor that contains the Audio Component you want to spatialize.
2. In the **Details** tab, select the Audio Component you want to spatialize.
3. Under **Attenuation**, check **Override Attenuation**.
4. Under **Attenuation Overrides**, check **Spatialize**.
5. In the **Spatialization Algorithm** drop-down, select **SPATIALIZATION HRTF**.

![Spatialization settings](image)

Enabling spatialization for an Audio component.

This configures Steam Audio to use HRTF-based binaural rendering for this sound. If you want to fine-tune how the spatialization is performed, you can configure advanced spatialization settings as described in the next section.

Spatialization Settings

If you want to configure how Steam Audio spatializes a sound, follow these steps:

1. Select the Audio Component whose spatialization settings you want to modify.
2. Under **Attenuation**, click the **Spatialization Plugin Settings** drop-down.
3. If you have already created a Spatialization Settings asset, you can select it from the list. Otherwise, click **Phonon Spatialization Source Settings** under **Create New Asset**.
4. Give the newly-created asset any name you prefer, then double-click it in the **Content Browser** tab.
Adding custom spatialization settings for a source.

In the window that opens, you can configure the following settings:

Spatialization Method

Select **HRTF** to use Steam Audio’s HRTF-based binaural rendering algorithm (this is the default). You can also select **Panning** to revert to a standard panning algorithm. This is mostly useful for comparison purposes only.

HRTF Interpolation Method

HRTF Interpolation specifies what interpolation scheme to use for HRTF-based 3D audio processing:

- **Nearest.** This option uses the HRTF from the direction nearest to the direction of the source for which HRTF data is available.

- **Bilinear.** This option uses an HRTF generated after interpolating from four directions nearest to the direction of the source, for which HRTF data is available. Bilinear HRTF interpolation may result in smoother audio for some kinds of sources when the listener looks around, but has higher CPU usage than Nearest HRTF interpolation.
Editing custom spatialization settings for a source.

Occlusion for Direct Sound

Steam Audio lets you model occlusion of direct sound, i.e., the sound that reaches the listener directly from the source. Before you can use the occlusion functionality of Steam Audio, you must tag and export the scene as described in the next section.

To enable occlusion for a sound source:

1. Select the Audio Component to which you want to apply occlusion effects.
2. Under Attenuation, expand Attenuation Overrides.
3. Check Enable Occlusion.
4. In the Occlusion Plugin Settings drop-down, select an Occlusion Settings asset if you've already created one. Otherwise, select Phonon Occlusion Source Settings under Create New Asset.
5. Give the newly-created asset any name you prefer.

Enabling occlusion for a sound source.
This configures Steam Audio’s occlusion algorithm with the default settings. To fine-tune how Steam Audio models occlusion for your sound, you can configure advanced occlusion settings as described in the next section.

Occlusion Settings

In the **Content Browser** tab, double-click the Occlusion Settings asset you created. In the window that opens, you can configure how Steam Audio models occlusion.

![Editing occlusion settings for a source.](image)

Direct Occlusion Method

Specifies the algorithm used by Steam Audio for modeling occlusion. The options are:

- **None.** Does not perform any occlusion.
- **Raycast.** Performs a single ray cast from source to the listener to determine occlusion. If the ray is occluded, direct sound is blocked. *(This is the default.)*
- **Partial.** Performs multiple ray casts from source to the listener, treating the source as a sphere with a specified radius. The volume of the sound source is adjusted based on the portion of the source visible from the listener.

Before using Raycast or Partial occlusion, you must set up and export the scene as described later in this manual.
Direct Occlusion Source Radius

Specifies the radius of the sphere to use when modeling Partial occlusion. Ignored if Direct Occlusion Method is set to None or Raycast.

Physics-Based Attenuation

When checked, physics-based distance attenuation (inverse distance falloff) is applied to the audio.

Physics-based attenuation is applied on top of any distance attenuation specified in the Attenuation Settings of an Audio Component. To avoid applying distance attenuation multiple times, either uncheck Physics Based Attenuation in the Occlusion Settings asset for a source, or ensure that no distance attenuation is applied by the Audio Component.

Scene Setup

To use Steam Audio for occlusion and environmental effects in your video game or VR experience, the scene needs to be set up by tagging geometry and specifying acoustic materials for the objects in your scene.

Tagging Geometry

Steam Audio needs to know what objects in your scene should be used to model occlusion and calculate environmental effects. You can specify this by tagging the relevant objects in multiple different ways.

Tagging Static Meshes

Any Actor with a Static Mesh component can be tagged with a Phonon Geometry component:

1. Select the Actor containing the Static Mesh Component you wish to tag.
2. Click Add Component.
Tagging a Static Mesh actor with a Phonon Geometry component.

Tagging Landscape Terrain

In the current version of Steam Audio for Unreal Engine 4, you cannot select individual parts of Landscape terrain to use for physics-based environmental audio simulation. You can either use all terrain in a scene, or none of it. To configure Steam Audio to use Landscape terrain:

1. In the main menu, click Edit > Project Settings.
2. In the Project Settings window, under Plugins, click Steam Audio.

Tagging BSP Geometry

In the current version of Steam Audio for Unreal Engine 4, you cannot select individual parts of BSP geometry to use for physics-based environmental audio simulation. You can either use all BSP geometry in a scene, or none of it. To configure Steam Audio to use BSP geometry:

1. In the main menu, click Edit > Project Settings.
2. In the Project Settings window, under Plugins, click Steam Audio.
3. Under **Scene Export**, check **Export BSP Geometry**.

 ![Image of Scene Export settings]

Tagging all Landscape terrain or BSP objects.

Tagging a Hierarchy of Objects

To tag a large number of Static Mesh Actors that share a common parent object in the World Outliner view:

1. Select the parent Actor of all the Actors you wish to tag.
2. Click **Add Component**, then select **Phonon Geometry**.
3. Select the **Phonon Geometry** component, then under **Settings**, click **Export All Children**.

 ![Image of Add Component and Settings]

Tagging all children of an Actor.
Tagging an object with Phonon Geometry does not require you to create an additional mesh first. Steam Audio can directly use the same meshes used for visual rendering. Not all objects have a noticeable influence on environmental effects. For example, in a large hangar, the room itself obviously influences the environmental effect. A small tin can on the floor, though, most likely doesn’t. But large amounts of small objects can collectively influence the environmental effect. For example, while a single wooden crate might not influence the hangar reverb, large stacks of crates are likely to have some impact.

Specifying Acoustic Materials

After tagging objects, the next step is to tell Steam Audio what they are made of. You can specify the acoustic material of an object as follows:

- Select the Actor whose material you wish to specify.
- In the Details view, click **Add Component**.
- Select **Phonon Material**.

In the Phonon Material component that appears, click the **Material Preset** drop-down and choose a material preset.

![Adding a Phonon Material component](image)

Choosing a material preset.

Acoustic Material for Object Hierarchies

If you have an object with a Phonon Geometry component with Export All Children checked, and you attach a Phonon Material component to it, all its children are assigned the material of the root object. It is possible to assign a child object a different material by attaching a Phonon Material component to the child object.
Global Default Materials

For scenes where most objects are made of the same material, barring a few exceptions, you can save time by specifying a global default material. Then, you only have to add Phonon Material components to objects whose material is different from the default. To specify a global default material:

1. In the main menu, click Edit > Project Settings.
2. In the Project Settings window, under Plugins, click Steam Audio.
4. Under Default Landscape Material, select a preset from the Material Preset drop-down.
5. Under Default BSP Material, select a preset from the Material Preset drop-down.

Choosing default materials.

Adjusting Material Properties

Instead of choosing a material preset, you can use a custom material. To do so, select Custom from the Material Preset drop-down, either on a Phonon Material component, or for the global default materials. Four sliders appear, allowing you to customize the material.
Customizing material properties.

Absorption

The first three sliders, **Low Frequency Absorption**, **Mid Frequency Absorption**, and **High Frequency Absorption**, let you specify how much sound the material absorbs at different frequencies. For example, setting High Frequency Absorption to 1 means that the material absorbs all high frequency sound that reaches it. This adds a low-pass filtering effect to any sound reflected by the object.

The center frequencies for the three frequency bands are 800 Hz, 4 KHz, and 15 KHz.

Scattering

The fourth slider, **Scattering**, lets you specify how "rough" the surface is when reflecting sound. Surfaces with a high scattering value randomly reflect sound in all directions; surfaces with a low scattering value reflect sound in a mirror-like manner.

Scene Export

You must "export" the scene before hitting Play in the Unreal editor or building a player, to ensure scene setup changes are available to Steam Audio. To export:

1. In the Unreal editor toolbar, click the down arrow next to **Build**.
2. Under **Phonon**, click **Export Scene**.
Environmental Audio Effects

Steam Audio lets you add physics-based environmental audio effects, including reflections, reverberation, and occlusion. Environmental effects, which model the interactions between sound and the environment, are also known as *indirect sound*, in contrast with *direct sound*, which models the sound reaching the listener directly from the source.

There are multiple ways in which you can use Steam Audio for indirect sound effects.

Per-Source Sound Propagation

Steam Audio can simulate how the environment affects a sound as it flows from the source to the listener. To enable this:

1. In the **Details** tab, select the Audio Component for which you want to enable sound propagation.
2. Under **Attenuation**, expand **Attenuation Overrides**.
3. In the **Reverb Plugin Settings** drop-down, select a Reverb Settings asset if you’ve already created one. Otherwise, select **Phonon Reverb Source Settings** under **Create New Asset**.
4. Give the newly-created asset any name you prefer.

![Image of Reverb Settings asset](image)

Enabling per-source sound propagation.

This configures Steam Audio’s sound propagation algorithm with the default settings for this source. To fine-tune sound propagation settings for this source, in the **Content Browser** tab, double-click the Reverb Settings asset you created. In the window that opens, you can configure the following settings:
Configuring per-source sound propagation.

Indirect Contribution

Increasing this value increases the contribution of indirect sound relative to the overall mix for this source.

Listener-Centric Reverb

Steam Audio can also use physics-based environmental audio simulation to apply a single reverb to all audio reaching the listener, based on the listener’s position. To enable this:

1. In the main menu, click **Edit > Project Settings**.
2. In the left pane, under **Plugins**, select **Steam Audio**.
3. In the **Reverb Simulation Type** drop-down, select **Real-Time**.
Enabling listener-centric reverb.

Setting the Reverb Simulation Type to Disabled tells Steam Audio not to apply listener-centric reverb. Typically, you will either want to use listener-centric reverb, or per-source sound propagation on individual sources. It is, however, possible to use both features if so desired.

Indirect Sound Settings

You can fine-tune various settings that control how Steam Audio simulates physics-based indirect sound. This can help you achieve the right balance between simulation quality and in-game performance. To access the settings:

1. In the main menu, click Edit > Project Settings.
2. In the left pane, under Plugins, select Steam Audio.

You can now adjust various settings for indirect sound. These settings apply to listener-centric reverb as well as per-source sound propagation (for all sources that use it).
Configuring indirect sound settings.

Ambisonics Order

This determines the directionality of environmental effects. Increasing this increases the compute complexity quadratically. Use zero order Ambisonics if no directionality is needed in environmental effects. Otherwise, first order Ambisonics should provide a good tradeoff between directionality and CPU usage.

Impulse Response Duration

This is the length of the impulse responses to generate, in seconds. Increasing this improves the quality of the simulation, but beyond a certain point (depending on the number of sound sources), may result in audio glitching.

Indirect Spatialization Method

If set to **Panning**, Steam Audio will apply a standard panning algorithm to render the Ambisonics-encoded environmental effects. If set to **HRTF**, Steam Audio will decode the environmental effects using an HRTF-based binaural rendering algorithm, for improved spatialization of indirect sound.

Indirect Contribution

Increasing this value increases the contribution of indirect sound relative to the overall mix for listener-centric reverb.
Max Sources

This is the maximum number of sound sources that can have per-source sound propagation enabled. For the purposes of this setting, listener-centric reverb counts as a source. For example, if Max Sources is set to 8, and you are using listener-centric reverb, then you can have up to 7 sources that use per-source sound propagation.

Real-Time Quality Settings

These settings let you fine-tune how Steam Audio simulates physics-based indirect sound. You can select one of the presets from the **Quality Preset** drop-down, or select **Custom**, and adjust the following settings.

Rays

This is the number of primary and reflection rays to trace from the listener position for real-time computation of environmental effects. Increasing this improves the quality of the simulation, at the cost of performance.

Secondary Rays

This is the number of directions that are sampled when simulating diffuse reflection. Setting this number too low may reduce the overall quality.

Bounces

Number of times the rays are allowed to bounce off of solid objects in real-time. Increasing this improves the quality of the simulation, at the cost of performance.

Baked Quality Settings

These settings are analogous to Real-Time Quality Settings, but are only used when baking indirect sound effects in the Unreal editor. See the next section for details.

Baked Environmental Audio Effects

As an alternative to simulating physics-based environmental effects in real time, you can choose to **bake** them in the Unreal editor. At run-time, the baked environmental effect information is used to look up the appropriate filters to apply based on the source and/or listener position. This way, you can perform much more detailed simulations as a pre-process, trading off CPU usage at run-time for additional disk space and memory usage for the baked data.

Placing Probes

Before you can bake environmental audio effects, you must place **probes** at all points in your scene where you want to bake environmental effects. A probe is a point at which environmental audio effects are sampled.
Probe Volumes

To create probes, you must first create a *Probe Volume*, which is a box-shaped region of space in which multiple probes will automatically be generated by Steam Audio. To create a Probe Volume:

1. In the **Modes** tab, click **Volumes**.
2. Drag a **Phonon Probe Volume** actor into your scene.
3. Using Unreal’s built-in translation and scaling gizmos, adjust the position and size of the Probe Volume so that it covers the geometry on/in which you want to generate probes.

![Placing a probe volume.](image-url)
You can create multiple Probe Volumes throughout the scene, Steam Audio will bake environmental effects for all probes in all Probe Volumes.

Probe Generation

Once a Probe Volume has been created, you must generate probes within it:

1. **In the World Outliner tab,** click the Probe Volume in which you wish to generate probes.
2. **In the Details tab,** select a Placement Strategy (see below).
3. **Click Generate Probes.**

![Image of Details panel](image)

Generating probes.

The probes will be displayed as blue dots in the scene.
Visualization of generated probes.

The Probe Placement Strategy determines how Steam Audio generates probes within a Probe Volume. Steam Audio currently supports the following strategies:

Centroid

Places a single probe at the center of the Probe Volume.

Uniform Floor

Places probes at a certain height above the floor with a certain horizontal spacing between them. The height is specified by the **Height Above Floor** parameter. Spacing is specified by the **Horizontal Spacing** parameter.

Baked Per-Source Sound Propagation

This section describes how to configure Steam Audio to generate and use baked data for per-source sound propagation.

Generating Baked Sound Propagation

To pre-compute sound propagation effects for a specific source:

1. In the **World Outliner**, select the actor containing the Audio component for you want to bake sound propagation.
2. In the **Details** view, click **Add Component**.
3. In the Add Component menu, click **Phonon Source**.
4. Specify a **Unique Identifier** for this source. Each baked source must have a distinct Unique Identifier.
5. Adjust the **Baking Radius** as needed. This radius, measured in game units, defines a sphere such that sound propagation is baked at all probes that lie within the sphere.

6. Click **Bake Propagation**.

Baking per-source sound propagation.

Using Baked Sound Propagation

To configure a sound source to use baked data, follow these steps:

1. In the **World Outliner** tab, select the actor containing the Audio component you want to configure.
2. In the **Details** tab, click the Audio component.
3. Under **Attenuation**, expand **Attenuation Overrides**.
4. In the **Reverb Plugin Settings** drop-down, click **Edit**.
5. In the window that appears, in the **Indirect Simulation Type** drop-down, select **Baked**.
Enabling baked per-source sound propagation.

Baked Listener-Centric Reverb

This section describes how to configure Steam Audio to generate and use baked data for listener-centric reverb.

Generating Baked Reverb

To pre-compute listener-centric reverb effects:

1. In the toolbar, click the down arrow next to **Build**.
2. Click **Bake Reverb**.

Using Baked Reverb

To configure Steam Audio to use baked data for listener-centric reverb:

1. In the main menu, click **Edit > Project Settings**.
2. In the left pane, under **Plugins**, select **Steam Audio**.
3. In the **Reverb Simulation Type** drop-down, select **Baked**.
Enabling baked listener-centric reverb.